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Abstract-In this paper, we propose a method of solving the 
biomagnetic inverse problem consisting of two approaches, the 
first of which is pointwise normalization. In the conventional 
normalization technique, each variable is normalized individu-
ally. This variablewise normalization is appropriate for scalar 
fields, but not for vector fields where one vector on a grid point 
is represented by several variables. Hence, pointwise operation 
is needed for vector fields. The second is a combination of norms. 
Use of the l2-norm as the cost function of an optimization prob-
lem is known to lead to spatially spread solutions, while the 
l1-norm leads to sparse solutions. To control sparseness of solu-
tions, we propose to use an internal division of the l2-norm and 
pointwise normalized l1-norm. The optimization problem con-
structed as above can be recast as a second-order cone program 
(SOCP), a nonlinear convex problem. The problem can be 
solved using recently developed efficient interior-point methods. 
Computer simulations showed that the sparseness of estimators 
obtained with the proposed method reflects both the ratio of 
internal division and the sparseness of true sources. Regulariza-
tion of normalization and relaxation of constraint conditions in 
the presence of noise are also presented. 

Keywords -  Inverse problem, MEG, norm, SOCP, normali-
zation 
 

I. INTRODUCTION 
 
Estimation of the source current distribution from the meas-
ured biomagnetic field is called a biomagnetic inverse prob-
lem and has received much attention for many years. One of 
these problems is the MEG (magnetoencephalography) in-
verse problem, which is to reconstruct the source current dis-
tribution from the magnetic field generated by the brain. 

The problem is usually underdetermined such that the so-
lution is not unique. One approach to determining the solu-
tion uniquely is to formulate an optimization problem. An 
example of cost functions of optimization problems is the 
l2-norm of the solution. The minimal l2-norm solution can be 
obtained analytically by using the pseudoinverse matrix, and 
is known to be spread spatially. Another example is the 
l1-norm. In this case, the problem is solved by using linear 
programming. The minimal l1-norm solution is known to be 
sparse. 

Normalization of variables was proposed for the use of the 
l1-norm [1]. The normalization technique is operated vari-
ablewise on the source vector and is appropriate for scalar 
fields. There is, however, room for taking into account that 
current distributions are vector fields. The problem formula-
tion and these conventional methods are described in Section 
II. 

In Section III, we propose a new normalization method, 
pointwise normalization. This can be successfully applied to 
vector fields. In addition, regularization of normalization is 
presented. We also propose a cost function that is an internal 

division of the l2-norm and the pointwise normalized l1-norm. 
Computer simulation results of the proposed method are 
shown in Section IV. In Section V, a consideration of noise is 
included. 
 

II. PRELIMINARIES 
A. System Equation 
 

The relationship between a biomagnetic field and a current 
density distribution is expressed as the linear equation 

Lqm = ,                  (1) 

where MR∈m , N3R∈q , and NM 3×∈ RL  are the meas-
ured magnetic field data vector ( M : number of sensors), 
source current distribution of discretized points in the source 
region ( N3 : number of points including orthogonal coordi-
nate system), and leadfield matrix (or transfer matrix), re-
spectively. Since the number of unknown variables is greater 
than the number of equations, NM < , the inverse problem 
will be underdetermined. Here, let us assume [ ] M=Lrank . 
In (1), q  is the unknown source to be estimated. 
 
B. Inverse Solution 
 

Representing a solution as a map g  and the resulting es-
timator as a vector q̂ , we obtain 

( ) ( )Lqmq ggˆ == .              (2) 
For example, any linear inverse solution g  can be ex-

pressed by the matrix MN×∈ 3RG  as 
Gmq =ˆ ,                  (3) 

and thus (2) can be written explicitly. 
However g  is not necessarily written as a function with an 
explicit form. An example is the case where the estimator is 
given as the solution of an optimization problem. 

( ) ( ){ }Lqmqm
q

== Sminargg           (4) 

( )qS  is the cost function to be minimized under constraint 
(1). 
 
C. Performance Criterion 
 

One way to design a solution g  is to introduce a per-
formance criterion on g . Here we consider the square sum 
of estimation errors for fundamental vectors, 

{ }( ) ( )∑
=
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g,g,E eLeeL .         (5) 

0E >  holds for any linear g  if the problem is underde-
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termined. G  (a linear g ) minimizing (5) is the pseudoin-
verse matrix of L : 

( ) 1−+ == TT LLLLG .               (6) 
The important point to observe is that the same estimator 

as (6) is obtained by the following optimization problem: 

( ) { }Lqmqm
q

==
2

minargg .         (7) 

Although a linear g  satisfying 0E =  yields the true so-
lution, it cannot occur due to the singularity of L  in (1). 
Generally speaking, a nonlinear g  can be focused more 
point sources through the minimization of E, whereas the 
estimators for their superposition are usually not the superpo-
sition of the estimators for each point source. 
 
D. Normalized l1-norm 
 

Matsuura and Okabe [1] proposed in  an optimization 
problem employing a variablewise normalized l1-norm as the 
cost function: 

( ) ( ){ }qLmqDm
q

~~
Sminargg 1~

1
1 == − ,       (8) 

where 1~ −= LDL , Dqq =~ , and D  is a diagonal matrix 

whose diagonal terms are 
2321 ,, Nll K . il  is the i th 

column vector of L . Thus we have 
1~ −

= iii lll  and 

iii qq l=~ , i.e., the variablewise normalization. 

The cost function ( )q1S  in (8) is 
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~S lqq .            (9) 

The optimization problem can be formulated as a linear 
program. Solutions are known to be sparse with their number 
of nonzero variables being equal to or smaller than M  if 
L  is nondegenerate. Particularly, for point sources, 1g  in 
(8) successfully achieves 0E = . 

Note that the variablewise normalization presented above 
has the intended affect only when source q  is a scalar field. 
If not, normalization that allows vector fields is required. 
This case will be further investigated in the next section. 
 

III. PROPOSED METHOD 
A. Pointwise Normalization 
 

Denoting the transfer matrix of point i  by 3×∈ M
i RL , 

(1) can be rewritten as 

[ ]
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where 3R∈iq  is the source vector on the i th grid point. 
In the case of vector fields, more than one variables related 

to the same grid point altogether represent the vector on that 
point. Those variables in general produce m s not orthogonal 

to each other. This nonorthogonality causes the variablewise 
normalization to be unsuitable for vector fields. 

For vector fields, we propose a pointwise normalization 
instead of the variablewise normalization. That is, instead of 
(8), we use 

( ) ( ){ }qLmqHm
q

~~
Sminargg p1~

1
p1 == − ,     (11) 

where 1~ −= LHL  and Hqq =~ . H  is a block diagonal 
matrix given as follows: 
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where eigenvalue decomposition of ii LLT  is utilized. Thus 

we have 21~ −= iiii EVLL  and iiii qVEq T21~ = , i.e., the point-
wise normalization. Let 

[ ] ,,,

~

T
1

2

N

ii

rr

r

K=

=

r

q
              (13) 

and the cost function ( )qp1S  
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This is the l1-norm of the vector r , which consists of the 
pointwise normalized norm of each point. 

By solving (11) the following theorem holds. 
 
Theorem Suppose we are solving (1), or equivalent, (10). Let 

iL  and ( )jij ≠L  have no common subspace other than 0  
(zero vector), i.e.,  

jijiji ≠=+= if,6]rank[]rank[]rank[ LLLL ,  (15) 
and each pointwise transfer matrix be of full rank, i.e., 

3]rank[ =iL .                (16) 
Then, any point source is correctly estimated by solving (11). 
A point source with active point a  is: 





≠=
=≠

ai
ai

i ,
,

0
0

q .              (17) 

 
The proof is not included due to space limitation. 
This result includes { }( ) 0,,gE p1 =ieL  and the fact that 

even if there are more than one nonzero variables in q , q  
is correctly solved when the nonzero variables are on the 
same discretized point. While the former is already shown in 
[1] under a stronger assumption than (15) and (16), the non-
degeneracy assumption, the latter cannot be achieved by the 
variablewise normalization. 

In norm minimizations, a point that produces smaller 
magnetic fields than other points tends to have a smaller es-
timated value. Normalization is intended to help avoiding 
such a dependence of the estimated values on measurement 
properties. Estimators, however, for source distributions other 
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than point sources could be perturbed if the matrix HH T  
has a large condition number. We use a regularization tech-
nique to contend with this issue: 

( ) T21
iii VIDH α+=′              (18) 

( ) ∑
=

′=α
N

i
ii

1
2p1 ,S qHq ,           (19) 

where α  is the regularization parameter for normalization. 
Estimations are thought to be more stable for larger α , 
whereas normalization has no effect as ∞→α . 
 
B. Combination of Norms 
 

So far, we have seen that the linearity of solution g  and 
performance { }( ) 0,g,E =ieL  are incompatible. Because g  
is desired to have both properties, a compromise between 
linearity and performance for point sources should be made. 

One approach is to linearly combine an estimator by linear 
estimation (6), which is the same as (7), and one by estima-
tion (11). The obtained estimator, however, has no additional 
information compared to the two original estimators and in-
deed, seems useless in practice. 

In contrast, using internal division of the cost functions of 
(7) and (11) leads to an interesting estimator. The new cost 
function, the combined-norm, is 

( ) ( ) ( )qqq ,S1,,S p12p12 αβ−+β=βα ,     (20) 

where 10, ≤β≤β  is the ratio of the internal division. The 
estimators for different β  show sparse to spread character-
istics as β  varies from 0  to 1 . 

The proposed cost function (20) is easily shown to be a 
norm. Thus the problem 

( ) ( ){ }Lqmqm
q

=βα=βα ,,Sminarg,,g p12p12    (21) 

is a convex optimization problem. Indeed, this problem (21) 
is readily reformulated as a second-order cone program 
(SOCP) [2]. Although this reformulation includes the relaxa-
tion of limiting conditions, equivalence of the optimization 
problem is preserved. For SOCPs, several efficient inte-
rior-point methods have been developed (see [3] for exam-
ple.) 

 
IV. RESULTS 

A. Scalar Fields on a Line 
 

Figure 1 shows estimators for a point source and a spread 
source, both on a line. The simulation system is the same as 
the one used in [4], i.e., a one-dimensional model. 

In combined-norm cases, the spread of estimators reflects 
the internal division ratio and the spread of the true distribu-
tion, while the spreads of both the minimum l1-norm and 
l2-norm estimators do not. 
 
B. a Vector Field on a Plane 
 

Estimated results for a vector field on a plane having two 
active regions are illustrated in Fig. 2. The plane is assumed 
to be disk shaped with radius 8.06cm and placed at 4cm 
height in a spherical conductor. Magnetic fields are observed 
by 64 sensors, whose radiuses are from 10.4cm to 15.2cm. 
The number of grid points, N , is 688. 

In the minimization of the l1-norm and combined-norm, 
the regularization of the pointwise normalization is per-
formed such that the condition number after the operation 

( ) ( ) 4T
min

T
max 10=α+λα+λ IHHIHH , where ( )Amaxλ  

and ( )Aminλ  are the maximum and the minimum eigenvalue 
of matrix A , respectively. Without the regularization, 

( ) ( ) 7T
min

T
max 1006.1 ×=λλ HHHH . 

For the distribution shown in Fig. 2, 01.0=β  seems appro-
priate for approximating the source. Note that the effect of 
the mixing parameter, β , will differ if the system transfer 
matrix and/or the number of variables, N3 , differ. 
 

V. DISCUSSION AND CONCLUSIONS 
 

Fig. 1. The estimated results for scalar fields on a line, without normalization: 
A) a point source, B) a Gaussian spread source. 1) The true distribution, 2) 
the min l1-norm estimator, 3) min combined-norm with 1.0=β , 4) min 

combined-norm with 3.0=β , and 5) min l2-norm. It is shown that the 

spreads of the minimum combined-norm estimators correspond to that of the 
true distributions, while those of the minimum l1- and l2-norm estimators do 
not. 

A) B) 

1) 

2) 

3) 

4) 

5) 

1) 

2) 

3) 
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5) 

Fig. 2. The estimated results for a vector field on a plane. The 
darkness of each dot corresponds to the norm of the vector on 
each point. 1) The true distribution, 2) the minimum pointwise 
normalized l1-norm estimator, 3) min combined-norm with 

01.0=β , 4) min l2-norm. The normalization is regularized. 
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In practice, noise is inevitably mixed into measurements. 
Assuming noise has a normal distribution, relaxation of con-
straint conditions as follows may be a suitable approach: 

( ) ( ) ( )
2p12p12n 1,,S,,,S Lqmqq −γ−+βαγ=γβα  (22) 

( ) ( ){ }γβα=γβα ,,,Sminarg,,,g p12np12n qm
q

.   (23) 

Problem (23) is still an SOCP. The second term on the right 
hand side of (22) may be modified by the noise covariance 
matrix. 

In this paper, we proposed a pointwise normalization 
method, which can solve point sources correctly when used 
with the l1-norm, to handle vector fields appropriately. The 
regularization of the normalization is also introduced in order 
to obtain stable estimations. Then, a function derived by in-
ternal division of the l2-norm and pointwise normalized 
l1-norm is proposed as a cost function of the optimization 
problem. The problem is solved by reformulating it to an 
SOCP; the solution shows sparse or spread characteristics 
according to the ratio of internal division. 

The next step in the research is to determine function pa-
rameters both in the case where one has some a priori 

knowledge about source activity and where nothing is as-
sumed previously. 
 

ACKNOWLEDGMENT 
 
The authors thank T. Terazono for his useful comments and 
suggestions on this paper. 
 

REFERENCES 
 
[1] K. Matsuura and Y. Okabe, “A robust reconstruction of 
sparse biomagnetic sources,” IEEE Trans. Biomed. Eng., vol. 
44, pp. 720-726, August 1997. 
[2] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, 
“Applications of second-order cone programming,” Lin. Alg. 
Appl., vol. 284, pp. 193-228, November 1998. 
[3] F.A. Potra and S.J. Wright, “Interior-point Methods,” J. 
Comp. Appl. Math., vol. 124, pp. 281-302, December 2000 
[4] R. Grave de Peralta-Menendez, O. Hauk, S. Gon-
zalez-Andino, H. Vogt, and C. Michel, “Linear Inverse Solu-
tions With Optimal Resolution Kernels Applied to Electro-
magnetic Tomography,” Human Brain Map., vol. 5, issue 6, 
pp. 454-467, 1997 

 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


